
On the Hunt for Correctness and Performance Bugs in Large-scale Programs
Milind Kulkarni, Saurabh Bagchi and Michael Gribskov

Purdue University

✦ System scale is increasing dramatically
✦ Larger machines
✦ Larger inputs

✦ Larger scales bring scalability issues:
✦ Bottlenecks that prevent scaling (synchronization,

communication, etc.)
✦ Bugs that arise due to scaling up (races, overflows, etc.)

✦ Detecting, diagnosing and fixing scaling issues is complex
and challenging

✦ This project investigates (semi) automatic approaches for
detecting, diagnosing and fixing scaling issues, with a
special emphasis on computational genomics applications

Scaling issues in programs

✦ Statistical debugging technique for detecting bugs at large
system scales
✦ Key idea behind statistical debugging: build a model of

correct program behavior, flag deviations from that model
as bugs

✦ Approach has issues when scaling up programs: even
normal program behavior changes with program scale!

✦ WuKong builds scaling models of programs, relating
system/input scale to program behavior
✦ Train at many small scales to build model that relates

control features (scale) to observational features (program
behavior)

✦ During deployment:
✦ Deviation from scaling model → bug
✦ Deviant feature → likely bug location.

✦ Detect bugs at deployed scales—even if never trained on
correct behavior at large scale!

Automatically Detecting and Localizing Bugs
that Manifest at Large System Scales

Is there a bug in
one of the

deployed runs?

RUN #

#
 O

F
T

IM
ES

 L
O

O
P

EX
EC

U
T

ES

Training runs Deployed runs

SCALE

#
 O

F
T

IM
ES

 L
O

O
P

EX
EC

U
T

ES

Training runs Deployed runs

✓

✗

✗Accounting for
scale makes trends

clear, errors at
large scales

obvious

Scaling Up Sequence Alignment

Bowen Zhou, Jonathan Too, Milind Kulkarni and Saurabh Bagchi, "WuKong: Automatically Detecting and Localizing Bugs that
Manifest at Large System Scales" HPDC 2013.

✦ Sequence alignment (finding overlapping sequences) is a
key kernel in computational genomics
✦ Can be nucleotide sequences or amino acid sequences
✦ Matches do not need to be exact

✦ BLAST (Basic Local Alignment Search Tool) is the state-of-
the-art alignment tool

✦ mpiBLAST is state-of-the-art parallel version: aligns query
sequences against databases of reference sequences

Has scalability bottleneck: if sequences are long,
mpiBLAST runs out of memory

✦ Orion exploits a finer granularity of parallelism, intra-query
parallelism:

1.Partition queries into fragments
2.Fragments must overlap to avoid missing alignments!

3.Perform alignment on each fragment
4.Merge together partial alignments to produce final result

d = DACGTTGG

q = CAC TTGA

q = CACTTGA

d = DACTTGG

initial query

q = CACTTGA
perfect match

d = DAGTTGG

q = CACTTGA one base-pair
mismatch

d = DA TTGG

q = CACTTGA one base-pair
gap (insertion)

one base-pair
gap (deletion)

0

200

400

600

800

1000

1200

1400

0 2 4 6 8 10

Ex
ec

ut
io

n
Ti

m
e(

se
c)

Log(Sequence length in base pairs)

Kanak Mahadik, Somali Chaterji, Bowen Zhou,, Milind Kulkarni and Saurabh Bagchi, "Orion: Scaling Genomic Sequence
Matching with Fine-Grained Parallelization" Supercomputing 2014.

> tu base pairs> tu base pairs

Fragment 1

Fragment 2

< tu base pairs
query Qi

> tu base pairs> tu base pairs

Fragment 1

Fragment 2

< tu base pairs

< tu base pairs
query Qi

> tu base pairs> tu base pairs

Fragment 1

Fragment 2

> tu base pairs
query Qi

Comparison of Orion and
mpiBLAST for different
query lengths. Note that
mpiBLAST runs out of
memory for the longest
queries

Orion scalability running
on a cluster of 64 16-core
nodes, normalized to
speedup on 64 cores.

